Рассчитать высоту треугольника со сторонами 143, 111 и 63
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{143 + 111 + 63}{2}} \normalsize = 158.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{158.5(158.5-143)(158.5-111)(158.5-63)}}{111}\normalsize = 60.1500496}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{158.5(158.5-143)(158.5-111)(158.5-63)}}{143}\normalsize = 46.6898986}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{158.5(158.5-143)(158.5-111)(158.5-63)}}{63}\normalsize = 105.978659}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 143, 111 и 63 равна 60.1500496
Высота треугольника опущенная с вершины A на сторону BC со сторонами 143, 111 и 63 равна 46.6898986
Высота треугольника опущенная с вершины C на сторону AB со сторонами 143, 111 и 63 равна 105.978659
Ссылка на результат
?n1=143&n2=111&n3=63
Найти высоту треугольника со сторонами 79, 65 и 58
Найти высоту треугольника со сторонами 83, 59 и 40
Найти высоту треугольника со сторонами 104, 102 и 30
Найти высоту треугольника со сторонами 117, 100 и 69
Найти высоту треугольника со сторонами 133, 133 и 49
Найти высоту треугольника со сторонами 132, 121 и 62
Найти высоту треугольника со сторонами 83, 59 и 40
Найти высоту треугольника со сторонами 104, 102 и 30
Найти высоту треугольника со сторонами 117, 100 и 69
Найти высоту треугольника со сторонами 133, 133 и 49
Найти высоту треугольника со сторонами 132, 121 и 62