Рассчитать высоту треугольника со сторонами 143, 119 и 95
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{143 + 119 + 95}{2}} \normalsize = 178.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{178.5(178.5-143)(178.5-119)(178.5-95)}}{119}\normalsize = 94.3013786}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{178.5(178.5-143)(178.5-119)(178.5-95)}}{143}\normalsize = 78.4745738}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{178.5(178.5-143)(178.5-119)(178.5-95)}}{95}\normalsize = 118.124885}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 143, 119 и 95 равна 94.3013786
Высота треугольника опущенная с вершины A на сторону BC со сторонами 143, 119 и 95 равна 78.4745738
Высота треугольника опущенная с вершины C на сторону AB со сторонами 143, 119 и 95 равна 118.124885
Ссылка на результат
?n1=143&n2=119&n3=95
Найти высоту треугольника со сторонами 110, 88 и 65
Найти высоту треугольника со сторонами 61, 42 и 35
Найти высоту треугольника со сторонами 45, 45 и 31
Найти высоту треугольника со сторонами 84, 71 и 63
Найти высоту треугольника со сторонами 85, 51 и 47
Найти высоту треугольника со сторонами 144, 114 и 99
Найти высоту треугольника со сторонами 61, 42 и 35
Найти высоту треугольника со сторонами 45, 45 и 31
Найти высоту треугольника со сторонами 84, 71 и 63
Найти высоту треугольника со сторонами 85, 51 и 47
Найти высоту треугольника со сторонами 144, 114 и 99