Рассчитать высоту треугольника со сторонами 143, 138 и 6
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{143 + 138 + 6}{2}} \normalsize = 143.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{143.5(143.5-143)(143.5-138)(143.5-6)}}{138}\normalsize = 3.37593873}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{143.5(143.5-143)(143.5-138)(143.5-6)}}{143}\normalsize = 3.25789891}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{143.5(143.5-143)(143.5-138)(143.5-6)}}{6}\normalsize = 77.6465908}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 143, 138 и 6 равна 3.37593873
Высота треугольника опущенная с вершины A на сторону BC со сторонами 143, 138 и 6 равна 3.25789891
Высота треугольника опущенная с вершины C на сторону AB со сторонами 143, 138 и 6 равна 77.6465908
Ссылка на результат
?n1=143&n2=138&n3=6
Найти высоту треугольника со сторонами 101, 96 и 67
Найти высоту треугольника со сторонами 132, 113 и 109
Найти высоту треугольника со сторонами 126, 114 и 109
Найти высоту треугольника со сторонами 115, 103 и 92
Найти высоту треугольника со сторонами 137, 83 и 78
Найти высоту треугольника со сторонами 150, 148 и 26
Найти высоту треугольника со сторонами 132, 113 и 109
Найти высоту треугольника со сторонами 126, 114 и 109
Найти высоту треугольника со сторонами 115, 103 и 92
Найти высоту треугольника со сторонами 137, 83 и 78
Найти высоту треугольника со сторонами 150, 148 и 26