Рассчитать высоту треугольника со сторонами 143, 141 и 80
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
![Высота треугольника по сторонам](/images/119.png)
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{143 + 141 + 80}{2}} \normalsize = 182}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{182(182-143)(182-141)(182-80)}}{141}\normalsize = 77.2806729}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{182(182-143)(182-141)(182-80)}}{143}\normalsize = 76.1998243}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{182(182-143)(182-141)(182-80)}}{80}\normalsize = 136.207186}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 143, 141 и 80 равна 77.2806729
Высота треугольника опущенная с вершины A на сторону BC со сторонами 143, 141 и 80 равна 76.1998243
Высота треугольника опущенная с вершины C на сторону AB со сторонами 143, 141 и 80 равна 136.207186
Ссылка на результат
?n1=143&n2=141&n3=80
Найти высоту треугольника со сторонами 127, 122 и 107
Найти высоту треугольника со сторонами 73, 72 и 6
Найти высоту треугольника со сторонами 55, 47 и 41
Найти высоту треугольника со сторонами 100, 84 и 71
Найти высоту треугольника со сторонами 57, 50 и 29
Найти высоту треугольника со сторонами 107, 96 и 12
Найти высоту треугольника со сторонами 73, 72 и 6
Найти высоту треугольника со сторонами 55, 47 и 41
Найти высоту треугольника со сторонами 100, 84 и 71
Найти высоту треугольника со сторонами 57, 50 и 29
Найти высоту треугольника со сторонами 107, 96 и 12