Рассчитать высоту треугольника со сторонами 143, 92 и 71
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{143 + 92 + 71}{2}} \normalsize = 153}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{153(153-143)(153-92)(153-71)}}{92}\normalsize = 60.1394881}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{153(153-143)(153-92)(153-71)}}{143}\normalsize = 38.6911392}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{153(153-143)(153-92)(153-71)}}{71}\normalsize = 77.9272241}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 143, 92 и 71 равна 60.1394881
Высота треугольника опущенная с вершины A на сторону BC со сторонами 143, 92 и 71 равна 38.6911392
Высота треугольника опущенная с вершины C на сторону AB со сторонами 143, 92 и 71 равна 77.9272241
Ссылка на результат
?n1=143&n2=92&n3=71
Найти высоту треугольника со сторонами 138, 98 и 82
Найти высоту треугольника со сторонами 132, 119 и 23
Найти высоту треугольника со сторонами 143, 141 и 130
Найти высоту треугольника со сторонами 122, 89 и 50
Найти высоту треугольника со сторонами 79, 68 и 20
Найти высоту треугольника со сторонами 150, 109 и 78
Найти высоту треугольника со сторонами 132, 119 и 23
Найти высоту треугольника со сторонами 143, 141 и 130
Найти высоту треугольника со сторонами 122, 89 и 50
Найти высоту треугольника со сторонами 79, 68 и 20
Найти высоту треугольника со сторонами 150, 109 и 78