Рассчитать высоту треугольника со сторонами 144, 105 и 90
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{144 + 105 + 90}{2}} \normalsize = 169.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{169.5(169.5-144)(169.5-105)(169.5-90)}}{105}\normalsize = 89.672455}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{169.5(169.5-144)(169.5-105)(169.5-90)}}{144}\normalsize = 65.3861651}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{169.5(169.5-144)(169.5-105)(169.5-90)}}{90}\normalsize = 104.617864}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 144, 105 и 90 равна 89.672455
Высота треугольника опущенная с вершины A на сторону BC со сторонами 144, 105 и 90 равна 65.3861651
Высота треугольника опущенная с вершины C на сторону AB со сторонами 144, 105 и 90 равна 104.617864
Ссылка на результат
?n1=144&n2=105&n3=90
Найти высоту треугольника со сторонами 87, 78 и 12
Найти высоту треугольника со сторонами 140, 125 и 108
Найти высоту треугольника со сторонами 86, 61 и 29
Найти высоту треугольника со сторонами 58, 46 и 34
Найти высоту треугольника со сторонами 141, 109 и 109
Найти высоту треугольника со сторонами 115, 77 и 49
Найти высоту треугольника со сторонами 140, 125 и 108
Найти высоту треугольника со сторонами 86, 61 и 29
Найти высоту треугольника со сторонами 58, 46 и 34
Найти высоту треугольника со сторонами 141, 109 и 109
Найти высоту треугольника со сторонами 115, 77 и 49