Рассчитать высоту треугольника со сторонами 144, 114 и 86
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
![Высота треугольника по сторонам](/images/119.png)
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{144 + 114 + 86}{2}} \normalsize = 172}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{172(172-144)(172-114)(172-86)}}{114}\normalsize = 85.9867641}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{172(172-144)(172-114)(172-86)}}{144}\normalsize = 68.0728549}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{172(172-144)(172-114)(172-86)}}{86}\normalsize = 113.982455}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 144, 114 и 86 равна 85.9867641
Высота треугольника опущенная с вершины A на сторону BC со сторонами 144, 114 и 86 равна 68.0728549
Высота треугольника опущенная с вершины C на сторону AB со сторонами 144, 114 и 86 равна 113.982455
Ссылка на результат
?n1=144&n2=114&n3=86
Найти высоту треугольника со сторонами 143, 135 и 28
Найти высоту треугольника со сторонами 114, 87 и 37
Найти высоту треугольника со сторонами 52, 35 и 30
Найти высоту треугольника со сторонами 130, 87 и 87
Найти высоту треугольника со сторонами 116, 97 и 49
Найти высоту треугольника со сторонами 105, 72 и 66
Найти высоту треугольника со сторонами 114, 87 и 37
Найти высоту треугольника со сторонами 52, 35 и 30
Найти высоту треугольника со сторонами 130, 87 и 87
Найти высоту треугольника со сторонами 116, 97 и 49
Найти высоту треугольника со сторонами 105, 72 и 66