Рассчитать высоту треугольника со сторонами 144, 118 и 48
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c

Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{144 + 118 + 48}{2}} \normalsize = 155}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{155(155-144)(155-118)(155-48)}}{118}\normalsize = 44.0354999}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{155(155-144)(155-118)(155-48)}}{144}\normalsize = 36.0846458}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{155(155-144)(155-118)(155-48)}}{48}\normalsize = 108.253937}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 144, 118 и 48 равна 44.0354999
Высота треугольника опущенная с вершины A на сторону BC со сторонами 144, 118 и 48 равна 36.0846458
Высота треугольника опущенная с вершины C на сторону AB со сторонами 144, 118 и 48 равна 108.253937
Ссылка на результат
?n1=144&n2=118&n3=48
Найти высоту треугольника со сторонами 125, 122 и 10
Найти высоту треугольника со сторонами 96, 81 и 63
Найти высоту треугольника со сторонами 122, 105 и 61
Найти высоту треугольника со сторонами 139, 109 и 48
Найти высоту треугольника со сторонами 139, 134 и 64
Найти высоту треугольника со сторонами 148, 122 и 91
Найти высоту треугольника со сторонами 96, 81 и 63
Найти высоту треугольника со сторонами 122, 105 и 61
Найти высоту треугольника со сторонами 139, 109 и 48
Найти высоту треугольника со сторонами 139, 134 и 64
Найти высоту треугольника со сторонами 148, 122 и 91