Рассчитать высоту треугольника со сторонами 144, 134 и 85
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{144 + 134 + 85}{2}} \normalsize = 181.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{181.5(181.5-144)(181.5-134)(181.5-85)}}{134}\normalsize = 83.3661235}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{181.5(181.5-144)(181.5-134)(181.5-85)}}{144}\normalsize = 77.5768094}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{181.5(181.5-144)(181.5-134)(181.5-85)}}{85}\normalsize = 131.424242}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 144, 134 и 85 равна 83.3661235
Высота треугольника опущенная с вершины A на сторону BC со сторонами 144, 134 и 85 равна 77.5768094
Высота треугольника опущенная с вершины C на сторону AB со сторонами 144, 134 и 85 равна 131.424242
Ссылка на результат
?n1=144&n2=134&n3=85
Найти высоту треугольника со сторонами 125, 96 и 69
Найти высоту треугольника со сторонами 114, 90 и 55
Найти высоту треугольника со сторонами 116, 92 и 86
Найти высоту треугольника со сторонами 108, 99 и 82
Найти высоту треугольника со сторонами 123, 113 и 103
Найти высоту треугольника со сторонами 134, 132 и 116
Найти высоту треугольника со сторонами 114, 90 и 55
Найти высоту треугольника со сторонами 116, 92 и 86
Найти высоту треугольника со сторонами 108, 99 и 82
Найти высоту треугольника со сторонами 123, 113 и 103
Найти высоту треугольника со сторонами 134, 132 и 116