Рассчитать высоту треугольника со сторонами 144, 138 и 36
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{144 + 138 + 36}{2}} \normalsize = 159}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{159(159-144)(159-138)(159-36)}}{138}\normalsize = 35.971397}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{159(159-144)(159-138)(159-36)}}{144}\normalsize = 34.4725887}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{159(159-144)(159-138)(159-36)}}{36}\normalsize = 137.890355}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 144, 138 и 36 равна 35.971397
Высота треугольника опущенная с вершины A на сторону BC со сторонами 144, 138 и 36 равна 34.4725887
Высота треугольника опущенная с вершины C на сторону AB со сторонами 144, 138 и 36 равна 137.890355
Ссылка на результат
?n1=144&n2=138&n3=36
Найти высоту треугольника со сторонами 134, 100 и 84
Найти высоту треугольника со сторонами 80, 77 и 28
Найти высоту треугольника со сторонами 34, 28 и 18
Найти высоту треугольника со сторонами 87, 64 и 27
Найти высоту треугольника со сторонами 87, 50 и 47
Найти высоту треугольника со сторонами 75, 72 и 44
Найти высоту треугольника со сторонами 80, 77 и 28
Найти высоту треугольника со сторонами 34, 28 и 18
Найти высоту треугольника со сторонами 87, 64 и 27
Найти высоту треугольника со сторонами 87, 50 и 47
Найти высоту треугольника со сторонами 75, 72 и 44