Рассчитать высоту треугольника со сторонами 144, 78 и 71
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{144 + 78 + 71}{2}} \normalsize = 146.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{146.5(146.5-144)(146.5-78)(146.5-71)}}{78}\normalsize = 35.2892941}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{146.5(146.5-144)(146.5-78)(146.5-71)}}{144}\normalsize = 19.1150343}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{146.5(146.5-144)(146.5-78)(146.5-71)}}{71}\normalsize = 38.7685203}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 144, 78 и 71 равна 35.2892941
Высота треугольника опущенная с вершины A на сторону BC со сторонами 144, 78 и 71 равна 19.1150343
Высота треугольника опущенная с вершины C на сторону AB со сторонами 144, 78 и 71 равна 38.7685203
Ссылка на результат
?n1=144&n2=78&n3=71
Найти высоту треугольника со сторонами 43, 37 и 19
Найти высоту треугольника со сторонами 150, 109 и 95
Найти высоту треугольника со сторонами 76, 71 и 21
Найти высоту треугольника со сторонами 129, 99 и 39
Найти высоту треугольника со сторонами 145, 103 и 99
Найти высоту треугольника со сторонами 115, 86 и 78
Найти высоту треугольника со сторонами 150, 109 и 95
Найти высоту треугольника со сторонами 76, 71 и 21
Найти высоту треугольника со сторонами 129, 99 и 39
Найти высоту треугольника со сторонами 145, 103 и 99
Найти высоту треугольника со сторонами 115, 86 и 78