Рассчитать высоту треугольника со сторонами 145, 110 и 98
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{145 + 110 + 98}{2}} \normalsize = 176.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{176.5(176.5-145)(176.5-110)(176.5-98)}}{110}\normalsize = 97.9513877}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{176.5(176.5-145)(176.5-110)(176.5-98)}}{145}\normalsize = 74.3079493}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{176.5(176.5-145)(176.5-110)(176.5-98)}}{98}\normalsize = 109.945435}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 145, 110 и 98 равна 97.9513877
Высота треугольника опущенная с вершины A на сторону BC со сторонами 145, 110 и 98 равна 74.3079493
Высота треугольника опущенная с вершины C на сторону AB со сторонами 145, 110 и 98 равна 109.945435
Ссылка на результат
?n1=145&n2=110&n3=98
Найти высоту треугольника со сторонами 131, 130 и 94
Найти высоту треугольника со сторонами 90, 83 и 81
Найти высоту треугольника со сторонами 72, 66 и 13
Найти высоту треугольника со сторонами 128, 119 и 71
Найти высоту треугольника со сторонами 149, 123 и 61
Найти высоту треугольника со сторонами 67, 65 и 49
Найти высоту треугольника со сторонами 90, 83 и 81
Найти высоту треугольника со сторонами 72, 66 и 13
Найти высоту треугольника со сторонами 128, 119 и 71
Найти высоту треугольника со сторонами 149, 123 и 61
Найти высоту треугольника со сторонами 67, 65 и 49