Рассчитать высоту треугольника со сторонами 145, 112 и 53
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{145 + 112 + 53}{2}} \normalsize = 155}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{155(155-145)(155-112)(155-53)}}{112}\normalsize = 46.5599104}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{155(155-145)(155-112)(155-53)}}{145}\normalsize = 35.963517}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{155(155-145)(155-112)(155-53)}}{53}\normalsize = 98.390754}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 145, 112 и 53 равна 46.5599104
Высота треугольника опущенная с вершины A на сторону BC со сторонами 145, 112 и 53 равна 35.963517
Высота треугольника опущенная с вершины C на сторону AB со сторонами 145, 112 и 53 равна 98.390754
Ссылка на результат
?n1=145&n2=112&n3=53
Найти высоту треугольника со сторонами 124, 114 и 55
Найти высоту треугольника со сторонами 126, 119 и 69
Найти высоту треугольника со сторонами 140, 134 и 115
Найти высоту треугольника со сторонами 139, 132 и 9
Найти высоту треугольника со сторонами 136, 119 и 98
Найти высоту треугольника со сторонами 93, 81 и 42
Найти высоту треугольника со сторонами 126, 119 и 69
Найти высоту треугольника со сторонами 140, 134 и 115
Найти высоту треугольника со сторонами 139, 132 и 9
Найти высоту треугольника со сторонами 136, 119 и 98
Найти высоту треугольника со сторонами 93, 81 и 42