Рассчитать высоту треугольника со сторонами 145, 112 и 95
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{145 + 112 + 95}{2}} \normalsize = 176}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{176(176-145)(176-112)(176-95)}}{112}\normalsize = 94.968953}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{176(176-145)(176-112)(176-95)}}{145}\normalsize = 73.3553292}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{176(176-145)(176-112)(176-95)}}{95}\normalsize = 111.963397}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 145, 112 и 95 равна 94.968953
Высота треугольника опущенная с вершины A на сторону BC со сторонами 145, 112 и 95 равна 73.3553292
Высота треугольника опущенная с вершины C на сторону AB со сторонами 145, 112 и 95 равна 111.963397
Ссылка на результат
?n1=145&n2=112&n3=95
Найти высоту треугольника со сторонами 128, 128 и 3
Найти высоту треугольника со сторонами 122, 73 и 69
Найти высоту треугольника со сторонами 138, 133 и 104
Найти высоту треугольника со сторонами 150, 116 и 101
Найти высоту треугольника со сторонами 89, 88 и 63
Найти высоту треугольника со сторонами 131, 127 и 21
Найти высоту треугольника со сторонами 122, 73 и 69
Найти высоту треугольника со сторонами 138, 133 и 104
Найти высоту треугольника со сторонами 150, 116 и 101
Найти высоту треугольника со сторонами 89, 88 и 63
Найти высоту треугольника со сторонами 131, 127 и 21