Рассчитать высоту треугольника со сторонами 145, 115 и 49
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{145 + 115 + 49}{2}} \normalsize = 154.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{154.5(154.5-145)(154.5-115)(154.5-49)}}{115}\normalsize = 43.0113404}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{154.5(154.5-145)(154.5-115)(154.5-49)}}{145}\normalsize = 34.1124424}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{154.5(154.5-145)(154.5-115)(154.5-49)}}{49}\normalsize = 100.944983}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 145, 115 и 49 равна 43.0113404
Высота треугольника опущенная с вершины A на сторону BC со сторонами 145, 115 и 49 равна 34.1124424
Высота треугольника опущенная с вершины C на сторону AB со сторонами 145, 115 и 49 равна 100.944983
Ссылка на результат
?n1=145&n2=115&n3=49
Найти высоту треугольника со сторонами 59, 40 и 34
Найти высоту треугольника со сторонами 134, 103 и 74
Найти высоту треугольника со сторонами 131, 131 и 19
Найти высоту треугольника со сторонами 85, 59 и 51
Найти высоту треугольника со сторонами 135, 95 и 58
Найти высоту треугольника со сторонами 26, 25 и 3
Найти высоту треугольника со сторонами 134, 103 и 74
Найти высоту треугольника со сторонами 131, 131 и 19
Найти высоту треугольника со сторонами 85, 59 и 51
Найти высоту треугольника со сторонами 135, 95 и 58
Найти высоту треугольника со сторонами 26, 25 и 3