Рассчитать высоту треугольника со сторонами 145, 115 и 84
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c

Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{145 + 115 + 84}{2}} \normalsize = 172}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{172(172-145)(172-115)(172-84)}}{115}\normalsize = 83.9376923}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{172(172-145)(172-115)(172-84)}}{145}\normalsize = 66.5712732}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{172(172-145)(172-115)(172-84)}}{84}\normalsize = 114.914698}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 145, 115 и 84 равна 83.9376923
Высота треугольника опущенная с вершины A на сторону BC со сторонами 145, 115 и 84 равна 66.5712732
Высота треугольника опущенная с вершины C на сторону AB со сторонами 145, 115 и 84 равна 114.914698
Ссылка на результат
?n1=145&n2=115&n3=84
Найти высоту треугольника со сторонами 93, 76 и 70
Найти высоту треугольника со сторонами 111, 91 и 53
Найти высоту треугольника со сторонами 95, 75 и 67
Найти высоту треугольника со сторонами 97, 78 и 60
Найти высоту треугольника со сторонами 141, 133 и 15
Найти высоту треугольника со сторонами 124, 81 и 72
Найти высоту треугольника со сторонами 111, 91 и 53
Найти высоту треугольника со сторонами 95, 75 и 67
Найти высоту треугольника со сторонами 97, 78 и 60
Найти высоту треугольника со сторонами 141, 133 и 15
Найти высоту треугольника со сторонами 124, 81 и 72