Рассчитать высоту треугольника со сторонами 145, 116 и 50
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{145 + 116 + 50}{2}} \normalsize = 155.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{155.5(155.5-145)(155.5-116)(155.5-50)}}{116}\normalsize = 44.9734941}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{155.5(155.5-145)(155.5-116)(155.5-50)}}{145}\normalsize = 35.9787953}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{155.5(155.5-145)(155.5-116)(155.5-50)}}{50}\normalsize = 104.338506}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 145, 116 и 50 равна 44.9734941
Высота треугольника опущенная с вершины A на сторону BC со сторонами 145, 116 и 50 равна 35.9787953
Высота треугольника опущенная с вершины C на сторону AB со сторонами 145, 116 и 50 равна 104.338506
Ссылка на результат
?n1=145&n2=116&n3=50
Найти высоту треугольника со сторонами 138, 105 и 89
Найти высоту треугольника со сторонами 145, 116 и 55
Найти высоту треугольника со сторонами 128, 115 и 28
Найти высоту треугольника со сторонами 147, 89 и 74
Найти высоту треугольника со сторонами 103, 86 и 82
Найти высоту треугольника со сторонами 129, 80 и 72
Найти высоту треугольника со сторонами 145, 116 и 55
Найти высоту треугольника со сторонами 128, 115 и 28
Найти высоту треугольника со сторонами 147, 89 и 74
Найти высоту треугольника со сторонами 103, 86 и 82
Найти высоту треугольника со сторонами 129, 80 и 72