Рассчитать высоту треугольника со сторонами 145, 117 и 51
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
![Высота треугольника по сторонам](/images/119.png)
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{145 + 117 + 51}{2}} \normalsize = 156.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{156.5(156.5-145)(156.5-117)(156.5-51)}}{117}\normalsize = 46.8139194}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{156.5(156.5-145)(156.5-117)(156.5-51)}}{145}\normalsize = 37.7739901}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{156.5(156.5-145)(156.5-117)(156.5-51)}}{51}\normalsize = 107.396639}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 145, 117 и 51 равна 46.8139194
Высота треугольника опущенная с вершины A на сторону BC со сторонами 145, 117 и 51 равна 37.7739901
Высота треугольника опущенная с вершины C на сторону AB со сторонами 145, 117 и 51 равна 107.396639
Ссылка на результат
?n1=145&n2=117&n3=51
Найти высоту треугольника со сторонами 83, 80 и 71
Найти высоту треугольника со сторонами 73, 66 и 29
Найти высоту треугольника со сторонами 102, 100 и 75
Найти высоту треугольника со сторонами 57, 38 и 32
Найти высоту треугольника со сторонами 50, 39 и 34
Найти высоту треугольника со сторонами 102, 64 и 40
Найти высоту треугольника со сторонами 73, 66 и 29
Найти высоту треугольника со сторонами 102, 100 и 75
Найти высоту треугольника со сторонами 57, 38 и 32
Найти высоту треугольника со сторонами 50, 39 и 34
Найти высоту треугольника со сторонами 102, 64 и 40