Рассчитать высоту треугольника со сторонами 145, 126 и 41
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
![Высота треугольника по сторонам](/images/119.png)
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{145 + 126 + 41}{2}} \normalsize = 156}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{156(156-145)(156-126)(156-41)}}{126}\normalsize = 38.6213668}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{156(156-145)(156-126)(156-41)}}{145}\normalsize = 33.560636}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{156(156-145)(156-126)(156-41)}}{41}\normalsize = 118.690054}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 145, 126 и 41 равна 38.6213668
Высота треугольника опущенная с вершины A на сторону BC со сторонами 145, 126 и 41 равна 33.560636
Высота треугольника опущенная с вершины C на сторону AB со сторонами 145, 126 и 41 равна 118.690054
Ссылка на результат
?n1=145&n2=126&n3=41
Найти высоту треугольника со сторонами 86, 79 и 9
Найти высоту треугольника со сторонами 96, 76 и 65
Найти высоту треугольника со сторонами 142, 142 и 133
Найти высоту треугольника со сторонами 148, 124 и 100
Найти высоту треугольника со сторонами 148, 145 и 4
Найти высоту треугольника со сторонами 135, 101 и 98
Найти высоту треугольника со сторонами 96, 76 и 65
Найти высоту треугольника со сторонами 142, 142 и 133
Найти высоту треугольника со сторонами 148, 124 и 100
Найти высоту треугольника со сторонами 148, 145 и 4
Найти высоту треугольника со сторонами 135, 101 и 98