Рассчитать высоту треугольника со сторонами 145, 127 и 47
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
![Высота треугольника по сторонам](/images/119.png)
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{145 + 127 + 47}{2}} \normalsize = 159.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{159.5(159.5-145)(159.5-127)(159.5-47)}}{127}\normalsize = 45.793998}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{159.5(159.5-145)(159.5-127)(159.5-47)}}{145}\normalsize = 40.1092259}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{159.5(159.5-145)(159.5-127)(159.5-47)}}{47}\normalsize = 123.741229}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 145, 127 и 47 равна 45.793998
Высота треугольника опущенная с вершины A на сторону BC со сторонами 145, 127 и 47 равна 40.1092259
Высота треугольника опущенная с вершины C на сторону AB со сторонами 145, 127 и 47 равна 123.741229
Ссылка на результат
?n1=145&n2=127&n3=47
Найти высоту треугольника со сторонами 93, 85 и 82
Найти высоту треугольника со сторонами 133, 88 и 51
Найти высоту треугольника со сторонами 105, 94 и 77
Найти высоту треугольника со сторонами 91, 84 и 40
Найти высоту треугольника со сторонами 129, 128 и 61
Найти высоту треугольника со сторонами 116, 110 и 55
Найти высоту треугольника со сторонами 133, 88 и 51
Найти высоту треугольника со сторонами 105, 94 и 77
Найти высоту треугольника со сторонами 91, 84 и 40
Найти высоту треугольника со сторонами 129, 128 и 61
Найти высоту треугольника со сторонами 116, 110 и 55