Рассчитать высоту треугольника со сторонами 145, 140 и 55
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{145 + 140 + 55}{2}} \normalsize = 170}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{170(170-145)(170-140)(170-55)}}{140}\normalsize = 54.7023486}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{170(170-145)(170-140)(170-55)}}{145}\normalsize = 52.8160607}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{170(170-145)(170-140)(170-55)}}{55}\normalsize = 139.242342}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 145, 140 и 55 равна 54.7023486
Высота треугольника опущенная с вершины A на сторону BC со сторонами 145, 140 и 55 равна 52.8160607
Высота треугольника опущенная с вершины C на сторону AB со сторонами 145, 140 и 55 равна 139.242342
Ссылка на результат
?n1=145&n2=140&n3=55
Найти высоту треугольника со сторонами 117, 104 и 70
Найти высоту треугольника со сторонами 105, 103 и 52
Найти высоту треугольника со сторонами 147, 128 и 88
Найти высоту треугольника со сторонами 132, 116 и 111
Найти высоту треугольника со сторонами 113, 90 и 36
Найти высоту треугольника со сторонами 67, 50 и 35
Найти высоту треугольника со сторонами 105, 103 и 52
Найти высоту треугольника со сторонами 147, 128 и 88
Найти высоту треугольника со сторонами 132, 116 и 111
Найти высоту треугольника со сторонами 113, 90 и 36
Найти высоту треугольника со сторонами 67, 50 и 35