Рассчитать высоту треугольника со сторонами 146, 100 и 95
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{146 + 100 + 95}{2}} \normalsize = 170.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{170.5(170.5-146)(170.5-100)(170.5-95)}}{100}\normalsize = 94.3068554}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{170.5(170.5-146)(170.5-100)(170.5-95)}}{146}\normalsize = 64.5937366}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{170.5(170.5-146)(170.5-100)(170.5-95)}}{95}\normalsize = 99.2703741}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 146, 100 и 95 равна 94.3068554
Высота треугольника опущенная с вершины A на сторону BC со сторонами 146, 100 и 95 равна 64.5937366
Высота треугольника опущенная с вершины C на сторону AB со сторонами 146, 100 и 95 равна 99.2703741
Ссылка на результат
?n1=146&n2=100&n3=95
Найти высоту треугольника со сторонами 89, 87 и 58
Найти высоту треугольника со сторонами 69, 60 и 25
Найти высоту треугольника со сторонами 114, 112 и 101
Найти высоту треугольника со сторонами 132, 114 и 90
Найти высоту треугольника со сторонами 123, 75 и 72
Найти высоту треугольника со сторонами 77, 71 и 56
Найти высоту треугольника со сторонами 69, 60 и 25
Найти высоту треугольника со сторонами 114, 112 и 101
Найти высоту треугольника со сторонами 132, 114 и 90
Найти высоту треугольника со сторонами 123, 75 и 72
Найти высоту треугольника со сторонами 77, 71 и 56