Рассчитать высоту треугольника со сторонами 146, 107 и 69
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{146 + 107 + 69}{2}} \normalsize = 161}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{161(161-146)(161-107)(161-69)}}{107}\normalsize = 64.7434114}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{161(161-146)(161-107)(161-69)}}{146}\normalsize = 47.4489385}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{161(161-146)(161-107)(161-69)}}{69}\normalsize = 100.399203}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 146, 107 и 69 равна 64.7434114
Высота треугольника опущенная с вершины A на сторону BC со сторонами 146, 107 и 69 равна 47.4489385
Высота треугольника опущенная с вершины C на сторону AB со сторонами 146, 107 и 69 равна 100.399203
Ссылка на результат
?n1=146&n2=107&n3=69
Найти высоту треугольника со сторонами 121, 101 и 97
Найти высоту треугольника со сторонами 148, 145 и 76
Найти высоту треугольника со сторонами 133, 129 и 67
Найти высоту треугольника со сторонами 126, 120 и 18
Найти высоту треугольника со сторонами 143, 123 и 29
Найти высоту треугольника со сторонами 106, 89 и 35
Найти высоту треугольника со сторонами 148, 145 и 76
Найти высоту треугольника со сторонами 133, 129 и 67
Найти высоту треугольника со сторонами 126, 120 и 18
Найти высоту треугольника со сторонами 143, 123 и 29
Найти высоту треугольника со сторонами 106, 89 и 35