Рассчитать высоту треугольника со сторонами 146, 112 и 51
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{146 + 112 + 51}{2}} \normalsize = 154.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{154.5(154.5-146)(154.5-112)(154.5-51)}}{112}\normalsize = 42.9190715}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{154.5(154.5-146)(154.5-112)(154.5-51)}}{146}\normalsize = 32.9242192}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{154.5(154.5-146)(154.5-112)(154.5-51)}}{51}\normalsize = 94.2536471}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 146, 112 и 51 равна 42.9190715
Высота треугольника опущенная с вершины A на сторону BC со сторонами 146, 112 и 51 равна 32.9242192
Высота треугольника опущенная с вершины C на сторону AB со сторонами 146, 112 и 51 равна 94.2536471
Ссылка на результат
?n1=146&n2=112&n3=51
Найти высоту треугольника со сторонами 64, 43 и 25
Найти высоту треугольника со сторонами 133, 91 и 84
Найти высоту треугольника со сторонами 135, 92 и 78
Найти высоту треугольника со сторонами 141, 110 и 42
Найти высоту треугольника со сторонами 139, 100 и 46
Найти высоту треугольника со сторонами 137, 114 и 83
Найти высоту треугольника со сторонами 133, 91 и 84
Найти высоту треугольника со сторонами 135, 92 и 78
Найти высоту треугольника со сторонами 141, 110 и 42
Найти высоту треугольника со сторонами 139, 100 и 46
Найти высоту треугольника со сторонами 137, 114 и 83