Рассчитать высоту треугольника со сторонами 146, 116 и 109
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{146 + 116 + 109}{2}} \normalsize = 185.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{185.5(185.5-146)(185.5-116)(185.5-109)}}{116}\normalsize = 107.613221}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{185.5(185.5-146)(185.5-116)(185.5-109)}}{146}\normalsize = 85.5009154}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{185.5(185.5-146)(185.5-116)(185.5-109)}}{109}\normalsize = 114.524162}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 146, 116 и 109 равна 107.613221
Высота треугольника опущенная с вершины A на сторону BC со сторонами 146, 116 и 109 равна 85.5009154
Высота треугольника опущенная с вершины C на сторону AB со сторонами 146, 116 и 109 равна 114.524162
Ссылка на результат
?n1=146&n2=116&n3=109
Найти высоту треугольника со сторонами 138, 138 и 11
Найти высоту треугольника со сторонами 89, 79 и 39
Найти высоту треугольника со сторонами 117, 96 и 93
Найти высоту треугольника со сторонами 79, 56 и 44
Найти высоту треугольника со сторонами 64, 63 и 4
Найти высоту треугольника со сторонами 121, 100 и 80
Найти высоту треугольника со сторонами 89, 79 и 39
Найти высоту треугольника со сторонами 117, 96 и 93
Найти высоту треугольника со сторонами 79, 56 и 44
Найти высоту треугольника со сторонами 64, 63 и 4
Найти высоту треугольника со сторонами 121, 100 и 80