Рассчитать высоту треугольника со сторонами 146, 117 и 41
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{146 + 117 + 41}{2}} \normalsize = 152}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{152(152-146)(152-117)(152-41)}}{117}\normalsize = 32.1763713}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{152(152-146)(152-117)(152-41)}}{146}\normalsize = 25.7851743}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{152(152-146)(152-117)(152-41)}}{41}\normalsize = 91.8203766}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 146, 117 и 41 равна 32.1763713
Высота треугольника опущенная с вершины A на сторону BC со сторонами 146, 117 и 41 равна 25.7851743
Высота треугольника опущенная с вершины C на сторону AB со сторонами 146, 117 и 41 равна 91.8203766
Ссылка на результат
?n1=146&n2=117&n3=41
Найти высоту треугольника со сторонами 148, 134 и 75
Найти высоту треугольника со сторонами 103, 102 и 8
Найти высоту треугольника со сторонами 143, 132 и 113
Найти высоту треугольника со сторонами 145, 119 и 52
Найти высоту треугольника со сторонами 103, 78 и 43
Найти высоту треугольника со сторонами 150, 150 и 6
Найти высоту треугольника со сторонами 103, 102 и 8
Найти высоту треугольника со сторонами 143, 132 и 113
Найти высоту треугольника со сторонами 145, 119 и 52
Найти высоту треугольника со сторонами 103, 78 и 43
Найти высоту треугольника со сторонами 150, 150 и 6