Рассчитать высоту треугольника со сторонами 146, 124 и 118
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
![Высота треугольника по сторонам](/images/119.png)
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{146 + 124 + 118}{2}} \normalsize = 194}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{194(194-146)(194-124)(194-118)}}{124}\normalsize = 113.523458}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{194(194-146)(194-124)(194-118)}}{146}\normalsize = 96.4171832}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{194(194-146)(194-124)(194-118)}}{118}\normalsize = 119.295837}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 146, 124 и 118 равна 113.523458
Высота треугольника опущенная с вершины A на сторону BC со сторонами 146, 124 и 118 равна 96.4171832
Высота треугольника опущенная с вершины C на сторону AB со сторонами 146, 124 и 118 равна 119.295837
Ссылка на результат
?n1=146&n2=124&n3=118
Найти высоту треугольника со сторонами 100, 74 и 72
Найти высоту треугольника со сторонами 91, 51 и 42
Найти высоту треугольника со сторонами 72, 71 и 53
Найти высоту треугольника со сторонами 104, 84 и 21
Найти высоту треугольника со сторонами 91, 74 и 27
Найти высоту треугольника со сторонами 135, 132 и 123
Найти высоту треугольника со сторонами 91, 51 и 42
Найти высоту треугольника со сторонами 72, 71 и 53
Найти высоту треугольника со сторонами 104, 84 и 21
Найти высоту треугольника со сторонами 91, 74 и 27
Найти высоту треугольника со сторонами 135, 132 и 123