Рассчитать высоту треугольника со сторонами 146, 126 и 33
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{146 + 126 + 33}{2}} \normalsize = 152.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{152.5(152.5-146)(152.5-126)(152.5-33)}}{126}\normalsize = 28.12276}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{152.5(152.5-146)(152.5-126)(152.5-33)}}{146}\normalsize = 24.2703271}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{152.5(152.5-146)(152.5-126)(152.5-33)}}{33}\normalsize = 107.377811}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 146, 126 и 33 равна 28.12276
Высота треугольника опущенная с вершины A на сторону BC со сторонами 146, 126 и 33 равна 24.2703271
Высота треугольника опущенная с вершины C на сторону AB со сторонами 146, 126 и 33 равна 107.377811
Ссылка на результат
?n1=146&n2=126&n3=33
Найти высоту треугольника со сторонами 128, 114 и 86
Найти высоту треугольника со сторонами 145, 96 и 91
Найти высоту треугольника со сторонами 73, 71 и 16
Найти высоту треугольника со сторонами 92, 73 и 46
Найти высоту треугольника со сторонами 107, 78 и 64
Найти высоту треугольника со сторонами 103, 102 и 5
Найти высоту треугольника со сторонами 145, 96 и 91
Найти высоту треугольника со сторонами 73, 71 и 16
Найти высоту треугольника со сторонами 92, 73 и 46
Найти высоту треугольника со сторонами 107, 78 и 64
Найти высоту треугольника со сторонами 103, 102 и 5