Рассчитать высоту треугольника со сторонами 146, 131 и 32
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{146 + 131 + 32}{2}} \normalsize = 154.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{154.5(154.5-146)(154.5-131)(154.5-32)}}{131}\normalsize = 29.6848173}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{154.5(154.5-146)(154.5-131)(154.5-32)}}{146}\normalsize = 26.6350073}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{154.5(154.5-146)(154.5-131)(154.5-32)}}{32}\normalsize = 121.522221}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 146, 131 и 32 равна 29.6848173
Высота треугольника опущенная с вершины A на сторону BC со сторонами 146, 131 и 32 равна 26.6350073
Высота треугольника опущенная с вершины C на сторону AB со сторонами 146, 131 и 32 равна 121.522221
Ссылка на результат
?n1=146&n2=131&n3=32
Найти высоту треугольника со сторонами 112, 112 и 96
Найти высоту треугольника со сторонами 134, 126 и 36
Найти высоту треугольника со сторонами 118, 113 и 99
Найти высоту треугольника со сторонами 129, 112 и 104
Найти высоту треугольника со сторонами 137, 114 и 66
Найти высоту треугольника со сторонами 150, 105 и 75
Найти высоту треугольника со сторонами 134, 126 и 36
Найти высоту треугольника со сторонами 118, 113 и 99
Найти высоту треугольника со сторонами 129, 112 и 104
Найти высоту треугольника со сторонами 137, 114 и 66
Найти высоту треугольника со сторонами 150, 105 и 75