Рассчитать высоту треугольника со сторонами 146, 133 и 122
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{146 + 133 + 122}{2}} \normalsize = 200.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{200.5(200.5-146)(200.5-133)(200.5-122)}}{133}\normalsize = 114.424891}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{200.5(200.5-146)(200.5-133)(200.5-122)}}{146}\normalsize = 104.236374}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{200.5(200.5-146)(200.5-133)(200.5-122)}}{122}\normalsize = 124.74189}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 146, 133 и 122 равна 114.424891
Высота треугольника опущенная с вершины A на сторону BC со сторонами 146, 133 и 122 равна 104.236374
Высота треугольника опущенная с вершины C на сторону AB со сторонами 146, 133 и 122 равна 124.74189
Ссылка на результат
?n1=146&n2=133&n3=122
Найти высоту треугольника со сторонами 142, 140 и 72
Найти высоту треугольника со сторонами 81, 75 и 37
Найти высоту треугольника со сторонами 80, 79 и 23
Найти высоту треугольника со сторонами 132, 113 и 79
Найти высоту треугольника со сторонами 137, 74 и 69
Найти высоту треугольника со сторонами 132, 112 и 30
Найти высоту треугольника со сторонами 81, 75 и 37
Найти высоту треугольника со сторонами 80, 79 и 23
Найти высоту треугольника со сторонами 132, 113 и 79
Найти высоту треугольника со сторонами 137, 74 и 69
Найти высоту треугольника со сторонами 132, 112 и 30