Рассчитать высоту треугольника со сторонами 146, 135 и 12
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{146 + 135 + 12}{2}} \normalsize = 146.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{146.5(146.5-146)(146.5-135)(146.5-12)}}{135}\normalsize = 4.98666397}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{146.5(146.5-146)(146.5-135)(146.5-12)}}{146}\normalsize = 4.61095641}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{146.5(146.5-146)(146.5-135)(146.5-12)}}{12}\normalsize = 56.0999697}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 146, 135 и 12 равна 4.98666397
Высота треугольника опущенная с вершины A на сторону BC со сторонами 146, 135 и 12 равна 4.61095641
Высота треугольника опущенная с вершины C на сторону AB со сторонами 146, 135 и 12 равна 56.0999697
Ссылка на результат
?n1=146&n2=135&n3=12
Найти высоту треугольника со сторонами 111, 79 и 35
Найти высоту треугольника со сторонами 110, 106 и 53
Найти высоту треугольника со сторонами 109, 91 и 37
Найти высоту треугольника со сторонами 124, 89 и 66
Найти высоту треугольника со сторонами 98, 58 и 54
Найти высоту треугольника со сторонами 102, 67 и 60
Найти высоту треугольника со сторонами 110, 106 и 53
Найти высоту треугольника со сторонами 109, 91 и 37
Найти высоту треугольника со сторонами 124, 89 и 66
Найти высоту треугольника со сторонами 98, 58 и 54
Найти высоту треугольника со сторонами 102, 67 и 60