Рассчитать высоту треугольника со сторонами 146, 139 и 40
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{146 + 139 + 40}{2}} \normalsize = 162.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{162.5(162.5-146)(162.5-139)(162.5-40)}}{139}\normalsize = 39.9747564}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{162.5(162.5-146)(162.5-139)(162.5-40)}}{146}\normalsize = 38.0581585}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{162.5(162.5-146)(162.5-139)(162.5-40)}}{40}\normalsize = 138.912278}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 146, 139 и 40 равна 39.9747564
Высота треугольника опущенная с вершины A на сторону BC со сторонами 146, 139 и 40 равна 38.0581585
Высота треугольника опущенная с вершины C на сторону AB со сторонами 146, 139 и 40 равна 138.912278
Ссылка на результат
?n1=146&n2=139&n3=40
Найти высоту треугольника со сторонами 88, 85 и 73
Найти высоту треугольника со сторонами 102, 74 и 64
Найти высоту треугольника со сторонами 42, 37 и 9
Найти высоту треугольника со сторонами 145, 129 и 82
Найти высоту треугольника со сторонами 131, 95 и 67
Найти высоту треугольника со сторонами 125, 96 и 67
Найти высоту треугольника со сторонами 102, 74 и 64
Найти высоту треугольника со сторонами 42, 37 и 9
Найти высоту треугольника со сторонами 145, 129 и 82
Найти высоту треугольника со сторонами 131, 95 и 67
Найти высоту треугольника со сторонами 125, 96 и 67