Рассчитать высоту треугольника со сторонами 147, 100 и 97

Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Высота треугольника по сторонам
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{147 + 100 + 97}{2}} \normalsize = 172}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{172(172-147)(172-100)(172-97)}}{100}\normalsize = 96.3742704}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{172(172-147)(172-100)(172-97)}}{147}\normalsize = 65.5607282}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{172(172-147)(172-100)(172-97)}}{97}\normalsize = 99.354918}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 147, 100 и 97 равна 96.3742704
Высота треугольника опущенная с вершины A на сторону BC со сторонами 147, 100 и 97 равна 65.5607282
Высота треугольника опущенная с вершины C на сторону AB со сторонами 147, 100 и 97 равна 99.354918
Ссылка на результат
?n1=147&n2=100&n3=97