Рассчитать высоту треугольника со сторонами 147, 106 и 67
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{147 + 106 + 67}{2}} \normalsize = 160}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{160(160-147)(160-106)(160-67)}}{106}\normalsize = 60.9809453}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{160(160-147)(160-106)(160-67)}}{147}\normalsize = 43.9726544}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{160(160-147)(160-106)(160-67)}}{67}\normalsize = 96.4773164}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 147, 106 и 67 равна 60.9809453
Высота треугольника опущенная с вершины A на сторону BC со сторонами 147, 106 и 67 равна 43.9726544
Высота треугольника опущенная с вершины C на сторону AB со сторонами 147, 106 и 67 равна 96.4773164
Ссылка на результат
?n1=147&n2=106&n3=67
Найти высоту треугольника со сторонами 129, 124 и 113
Найти высоту треугольника со сторонами 93, 92 и 84
Найти высоту треугольника со сторонами 100, 84 и 54
Найти высоту треугольника со сторонами 127, 96 и 49
Найти высоту треугольника со сторонами 148, 93 и 67
Найти высоту треугольника со сторонами 139, 127 и 16
Найти высоту треугольника со сторонами 93, 92 и 84
Найти высоту треугольника со сторонами 100, 84 и 54
Найти высоту треугольника со сторонами 127, 96 и 49
Найти высоту треугольника со сторонами 148, 93 и 67
Найти высоту треугольника со сторонами 139, 127 и 16