Рассчитать высоту треугольника со сторонами 147, 141 и 137
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{147 + 141 + 137}{2}} \normalsize = 212.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{212.5(212.5-147)(212.5-141)(212.5-137)}}{141}\normalsize = 122.952538}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{212.5(212.5-147)(212.5-141)(212.5-137)}}{147}\normalsize = 117.934067}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{212.5(212.5-147)(212.5-141)(212.5-137)}}{137}\normalsize = 126.542393}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 147, 141 и 137 равна 122.952538
Высота треугольника опущенная с вершины A на сторону BC со сторонами 147, 141 и 137 равна 117.934067
Высота треугольника опущенная с вершины C на сторону AB со сторонами 147, 141 и 137 равна 126.542393
Ссылка на результат
?n1=147&n2=141&n3=137
Найти высоту треугольника со сторонами 124, 119 и 104
Найти высоту треугольника со сторонами 69, 61 и 40
Найти высоту треугольника со сторонами 142, 112 и 97
Найти высоту треугольника со сторонами 63, 57 и 44
Найти высоту треугольника со сторонами 89, 58 и 48
Найти высоту треугольника со сторонами 133, 119 и 68
Найти высоту треугольника со сторонами 69, 61 и 40
Найти высоту треугольника со сторонами 142, 112 и 97
Найти высоту треугольника со сторонами 63, 57 и 44
Найти высоту треугольника со сторонами 89, 58 и 48
Найти высоту треугольника со сторонами 133, 119 и 68