Рассчитать высоту треугольника со сторонами 147, 144 и 6
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{147 + 144 + 6}{2}} \normalsize = 148.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{148.5(148.5-147)(148.5-144)(148.5-6)}}{144}\normalsize = 5.24916288}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{148.5(148.5-147)(148.5-144)(148.5-6)}}{147}\normalsize = 5.14203711}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{148.5(148.5-147)(148.5-144)(148.5-6)}}{6}\normalsize = 125.979909}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 147, 144 и 6 равна 5.24916288
Высота треугольника опущенная с вершины A на сторону BC со сторонами 147, 144 и 6 равна 5.14203711
Высота треугольника опущенная с вершины C на сторону AB со сторонами 147, 144 и 6 равна 125.979909
Ссылка на результат
?n1=147&n2=144&n3=6
Найти высоту треугольника со сторонами 102, 86 и 27
Найти высоту треугольника со сторонами 81, 49 и 38
Найти высоту треугольника со сторонами 115, 86 и 53
Найти высоту треугольника со сторонами 146, 138 и 31
Найти высоту треугольника со сторонами 121, 84 и 45
Найти высоту треугольника со сторонами 73, 59 и 21
Найти высоту треугольника со сторонами 81, 49 и 38
Найти высоту треугольника со сторонами 115, 86 и 53
Найти высоту треугольника со сторонами 146, 138 и 31
Найти высоту треугольника со сторонами 121, 84 и 45
Найти высоту треугольника со сторонами 73, 59 и 21