Рассчитать высоту треугольника со сторонами 147, 80 и 79
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{147 + 80 + 79}{2}} \normalsize = 153}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{153(153-147)(153-80)(153-79)}}{80}\normalsize = 55.6722328}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{153(153-147)(153-80)(153-79)}}{147}\normalsize = 30.2978137}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{153(153-147)(153-80)(153-79)}}{79}\normalsize = 56.3769446}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 147, 80 и 79 равна 55.6722328
Высота треугольника опущенная с вершины A на сторону BC со сторонами 147, 80 и 79 равна 30.2978137
Высота треугольника опущенная с вершины C на сторону AB со сторонами 147, 80 и 79 равна 56.3769446
Ссылка на результат
?n1=147&n2=80&n3=79
Найти высоту треугольника со сторонами 142, 140 и 113
Найти высоту треугольника со сторонами 139, 98 и 51
Найти высоту треугольника со сторонами 98, 60 и 52
Найти высоту треугольника со сторонами 137, 126 и 117
Найти высоту треугольника со сторонами 104, 104 и 22
Найти высоту треугольника со сторонами 97, 95 и 16
Найти высоту треугольника со сторонами 139, 98 и 51
Найти высоту треугольника со сторонами 98, 60 и 52
Найти высоту треугольника со сторонами 137, 126 и 117
Найти высоту треугольника со сторонами 104, 104 и 22
Найти высоту треугольника со сторонами 97, 95 и 16