Рассчитать высоту треугольника со сторонами 148, 107 и 67
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{148 + 107 + 67}{2}} \normalsize = 161}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{161(161-148)(161-107)(161-67)}}{107}\normalsize = 60.924453}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{161(161-148)(161-107)(161-67)}}{148}\normalsize = 44.0467329}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{161(161-148)(161-107)(161-67)}}{67}\normalsize = 97.2972608}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 148, 107 и 67 равна 60.924453
Высота треугольника опущенная с вершины A на сторону BC со сторонами 148, 107 и 67 равна 44.0467329
Высота треугольника опущенная с вершины C на сторону AB со сторонами 148, 107 и 67 равна 97.2972608
Ссылка на результат
?n1=148&n2=107&n3=67
Найти высоту треугольника со сторонами 150, 117 и 72
Найти высоту треугольника со сторонами 74, 74 и 22
Найти высоту треугольника со сторонами 111, 96 и 62
Найти высоту треугольника со сторонами 132, 112 и 74
Найти высоту треугольника со сторонами 140, 83 и 82
Найти высоту треугольника со сторонами 80, 46 и 45
Найти высоту треугольника со сторонами 74, 74 и 22
Найти высоту треугольника со сторонами 111, 96 и 62
Найти высоту треугольника со сторонами 132, 112 и 74
Найти высоту треугольника со сторонами 140, 83 и 82
Найти высоту треугольника со сторонами 80, 46 и 45