Рассчитать высоту треугольника со сторонами 148, 108 и 92
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{148 + 108 + 92}{2}} \normalsize = 174}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{174(174-148)(174-108)(174-92)}}{108}\normalsize = 91.6318452}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{174(174-148)(174-108)(174-92)}}{148}\normalsize = 66.8664817}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{174(174-148)(174-108)(174-92)}}{92}\normalsize = 107.567818}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 148, 108 и 92 равна 91.6318452
Высота треугольника опущенная с вершины A на сторону BC со сторонами 148, 108 и 92 равна 66.8664817
Высота треугольника опущенная с вершины C на сторону AB со сторонами 148, 108 и 92 равна 107.567818
Ссылка на результат
?n1=148&n2=108&n3=92
Найти высоту треугольника со сторонами 148, 129 и 92
Найти высоту треугольника со сторонами 128, 128 и 109
Найти высоту треугольника со сторонами 67, 55 и 44
Найти высоту треугольника со сторонами 133, 92 и 57
Найти высоту треугольника со сторонами 95, 73 и 63
Найти высоту треугольника со сторонами 115, 100 и 40
Найти высоту треугольника со сторонами 128, 128 и 109
Найти высоту треугольника со сторонами 67, 55 и 44
Найти высоту треугольника со сторонами 133, 92 и 57
Найти высоту треугольника со сторонами 95, 73 и 63
Найти высоту треугольника со сторонами 115, 100 и 40