Рассчитать высоту треугольника со сторонами 148, 122 и 80
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{148 + 122 + 80}{2}} \normalsize = 175}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{175(175-148)(175-122)(175-80)}}{122}\normalsize = 79.9596361}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{175(175-148)(175-122)(175-80)}}{148}\normalsize = 65.912673}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{175(175-148)(175-122)(175-80)}}{80}\normalsize = 121.938445}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 148, 122 и 80 равна 79.9596361
Высота треугольника опущенная с вершины A на сторону BC со сторонами 148, 122 и 80 равна 65.912673
Высота треугольника опущенная с вершины C на сторону AB со сторонами 148, 122 и 80 равна 121.938445
Ссылка на результат
?n1=148&n2=122&n3=80
Найти высоту треугольника со сторонами 43, 40 и 32
Найти высоту треугольника со сторонами 96, 84 и 78
Найти высоту треугольника со сторонами 144, 100 и 47
Найти высоту треугольника со сторонами 100, 79 и 66
Найти высоту треугольника со сторонами 34, 27 и 17
Найти высоту треугольника со сторонами 140, 136 и 91
Найти высоту треугольника со сторонами 96, 84 и 78
Найти высоту треугольника со сторонами 144, 100 и 47
Найти высоту треугольника со сторонами 100, 79 и 66
Найти высоту треугольника со сторонами 34, 27 и 17
Найти высоту треугольника со сторонами 140, 136 и 91