Рассчитать высоту треугольника со сторонами 148, 125 и 70
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{148 + 125 + 70}{2}} \normalsize = 171.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{171.5(171.5-148)(171.5-125)(171.5-70)}}{125}\normalsize = 69.7823312}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{171.5(171.5-148)(171.5-125)(171.5-70)}}{148}\normalsize = 58.9377797}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{171.5(171.5-148)(171.5-125)(171.5-70)}}{70}\normalsize = 124.611306}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 148, 125 и 70 равна 69.7823312
Высота треугольника опущенная с вершины A на сторону BC со сторонами 148, 125 и 70 равна 58.9377797
Высота треугольника опущенная с вершины C на сторону AB со сторонами 148, 125 и 70 равна 124.611306
Ссылка на результат
?n1=148&n2=125&n3=70
Найти высоту треугольника со сторонами 87, 87 и 38
Найти высоту треугольника со сторонами 139, 97 и 95
Найти высоту треугольника со сторонами 123, 104 и 28
Найти высоту треугольника со сторонами 145, 116 и 34
Найти высоту треугольника со сторонами 123, 123 и 11
Найти высоту треугольника со сторонами 148, 146 и 133
Найти высоту треугольника со сторонами 139, 97 и 95
Найти высоту треугольника со сторонами 123, 104 и 28
Найти высоту треугольника со сторонами 145, 116 и 34
Найти высоту треугольника со сторонами 123, 123 и 11
Найти высоту треугольника со сторонами 148, 146 и 133