Рассчитать высоту треугольника со сторонами 148, 129 и 51
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c

Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{148 + 129 + 51}{2}} \normalsize = 164}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{164(164-148)(164-129)(164-51)}}{129}\normalsize = 49.9453941}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{164(164-148)(164-129)(164-51)}}{148}\normalsize = 43.5334854}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{164(164-148)(164-129)(164-51)}}{51}\normalsize = 126.332468}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 148, 129 и 51 равна 49.9453941
Высота треугольника опущенная с вершины A на сторону BC со сторонами 148, 129 и 51 равна 43.5334854
Высота треугольника опущенная с вершины C на сторону AB со сторонами 148, 129 и 51 равна 126.332468
Ссылка на результат
?n1=148&n2=129&n3=51
Найти высоту треугольника со сторонами 48, 48 и 26
Найти высоту треугольника со сторонами 91, 91 и 46
Найти высоту треугольника со сторонами 131, 127 и 11
Найти высоту треугольника со сторонами 139, 139 и 138
Найти высоту треугольника со сторонами 77, 54 и 33
Найти высоту треугольника со сторонами 145, 131 и 126
Найти высоту треугольника со сторонами 91, 91 и 46
Найти высоту треугольника со сторонами 131, 127 и 11
Найти высоту треугольника со сторонами 139, 139 и 138
Найти высоту треугольника со сторонами 77, 54 и 33
Найти высоту треугольника со сторонами 145, 131 и 126