Рассчитать высоту треугольника со сторонами 148, 133 и 111
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{148 + 133 + 111}{2}} \normalsize = 196}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{196(196-148)(196-133)(196-111)}}{133}\normalsize = 106.734974}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{196(196-148)(196-133)(196-111)}}{148}\normalsize = 95.9172397}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{196(196-148)(196-133)(196-111)}}{111}\normalsize = 127.889653}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 148, 133 и 111 равна 106.734974
Высота треугольника опущенная с вершины A на сторону BC со сторонами 148, 133 и 111 равна 95.9172397
Высота треугольника опущенная с вершины C на сторону AB со сторонами 148, 133 и 111 равна 127.889653
Ссылка на результат
?n1=148&n2=133&n3=111
Найти высоту треугольника со сторонами 115, 91 и 76
Найти высоту треугольника со сторонами 113, 103 и 62
Найти высоту треугольника со сторонами 123, 86 и 38
Найти высоту треугольника со сторонами 82, 69 и 32
Найти высоту треугольника со сторонами 124, 104 и 24
Найти высоту треугольника со сторонами 142, 78 и 69
Найти высоту треугольника со сторонами 113, 103 и 62
Найти высоту треугольника со сторонами 123, 86 и 38
Найти высоту треугольника со сторонами 82, 69 и 32
Найти высоту треугольника со сторонами 124, 104 и 24
Найти высоту треугольника со сторонами 142, 78 и 69