Рассчитать высоту треугольника со сторонами 148, 137 и 24
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{148 + 137 + 24}{2}} \normalsize = 154.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{154.5(154.5-148)(154.5-137)(154.5-24)}}{137}\normalsize = 22.1082633}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{154.5(154.5-148)(154.5-137)(154.5-24)}}{148}\normalsize = 20.4650816}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{154.5(154.5-148)(154.5-137)(154.5-24)}}{24}\normalsize = 126.201337}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 148, 137 и 24 равна 22.1082633
Высота треугольника опущенная с вершины A на сторону BC со сторонами 148, 137 и 24 равна 20.4650816
Высота треугольника опущенная с вершины C на сторону AB со сторонами 148, 137 и 24 равна 126.201337
Ссылка на результат
?n1=148&n2=137&n3=24
Найти высоту треугольника со сторонами 102, 83 и 43
Найти высоту треугольника со сторонами 142, 132 и 21
Найти высоту треугольника со сторонами 73, 57 и 23
Найти высоту треугольника со сторонами 148, 94 и 75
Найти высоту треугольника со сторонами 43, 37 и 25
Найти высоту треугольника со сторонами 88, 73 и 22
Найти высоту треугольника со сторонами 142, 132 и 21
Найти высоту треугольника со сторонами 73, 57 и 23
Найти высоту треугольника со сторонами 148, 94 и 75
Найти высоту треугольника со сторонами 43, 37 и 25
Найти высоту треугольника со сторонами 88, 73 и 22