Рассчитать высоту треугольника со сторонами 148, 91 и 89
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{148 + 91 + 89}{2}} \normalsize = 164}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{164(164-148)(164-91)(164-89)}}{91}\normalsize = 83.3033718}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{164(164-148)(164-91)(164-89)}}{148}\normalsize = 51.2203165}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{164(164-148)(164-91)(164-89)}}{89}\normalsize = 85.1753577}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 148, 91 и 89 равна 83.3033718
Высота треугольника опущенная с вершины A на сторону BC со сторонами 148, 91 и 89 равна 51.2203165
Высота треугольника опущенная с вершины C на сторону AB со сторонами 148, 91 и 89 равна 85.1753577
Ссылка на результат
?n1=148&n2=91&n3=89
Найти высоту треугольника со сторонами 134, 134 и 94
Найти высоту треугольника со сторонами 78, 77 и 38
Найти высоту треугольника со сторонами 131, 127 и 66
Найти высоту треугольника со сторонами 112, 107 и 92
Найти высоту треугольника со сторонами 53, 51 и 4
Найти высоту треугольника со сторонами 119, 117 и 45
Найти высоту треугольника со сторонами 78, 77 и 38
Найти высоту треугольника со сторонами 131, 127 и 66
Найти высоту треугольника со сторонами 112, 107 и 92
Найти высоту треугольника со сторонами 53, 51 и 4
Найти высоту треугольника со сторонами 119, 117 и 45