Рассчитать высоту треугольника со сторонами 149, 119 и 91
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{149 + 119 + 91}{2}} \normalsize = 179.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{179.5(179.5-149)(179.5-119)(179.5-91)}}{119}\normalsize = 90.9943659}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{179.5(179.5-149)(179.5-119)(179.5-91)}}{149}\normalsize = 72.6733527}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{179.5(179.5-149)(179.5-119)(179.5-91)}}{91}\normalsize = 118.992632}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 149, 119 и 91 равна 90.9943659
Высота треугольника опущенная с вершины A на сторону BC со сторонами 149, 119 и 91 равна 72.6733527
Высота треугольника опущенная с вершины C на сторону AB со сторонами 149, 119 и 91 равна 118.992632
Ссылка на результат
?n1=149&n2=119&n3=91
Найти высоту треугольника со сторонами 105, 86 и 71
Найти высоту треугольника со сторонами 91, 67 и 34
Найти высоту треугольника со сторонами 111, 109 и 48
Найти высоту треугольника со сторонами 120, 99 и 66
Найти высоту треугольника со сторонами 94, 67 и 44
Найти высоту треугольника со сторонами 88, 64 и 42
Найти высоту треугольника со сторонами 91, 67 и 34
Найти высоту треугольника со сторонами 111, 109 и 48
Найти высоту треугольника со сторонами 120, 99 и 66
Найти высоту треугольника со сторонами 94, 67 и 44
Найти высоту треугольника со сторонами 88, 64 и 42