Рассчитать высоту треугольника со сторонами 149, 133 и 54

Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Высота треугольника по сторонам
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{149 + 133 + 54}{2}} \normalsize = 168}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{168(168-149)(168-133)(168-54)}}{133}\normalsize = 53.6656315}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{168(168-149)(168-133)(168-54)}}{149}\normalsize = 47.9028791}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{168(168-149)(168-133)(168-54)}}{54}\normalsize = 132.176463}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 149, 133 и 54 равна 53.6656315
Высота треугольника опущенная с вершины A на сторону BC со сторонами 149, 133 и 54 равна 47.9028791
Высота треугольника опущенная с вершины C на сторону AB со сторонами 149, 133 и 54 равна 132.176463
Ссылка на результат
?n1=149&n2=133&n3=54