Рассчитать высоту треугольника со сторонами 149, 140 и 81
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
![Высота треугольника по сторонам](/images/119.png)
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{149 + 140 + 81}{2}} \normalsize = 185}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{185(185-149)(185-140)(185-81)}}{140}\normalsize = 79.7557496}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{185(185-149)(185-140)(185-81)}}{149}\normalsize = 74.9382882}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{185(185-149)(185-140)(185-81)}}{81}\normalsize = 137.849444}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 149, 140 и 81 равна 79.7557496
Высота треугольника опущенная с вершины A на сторону BC со сторонами 149, 140 и 81 равна 74.9382882
Высота треугольника опущенная с вершины C на сторону AB со сторонами 149, 140 и 81 равна 137.849444
Ссылка на результат
?n1=149&n2=140&n3=81
Найти высоту треугольника со сторонами 81, 74 и 62
Найти высоту треугольника со сторонами 135, 102 и 74
Найти высоту треугольника со сторонами 117, 98 и 39
Найти высоту треугольника со сторонами 57, 49 и 18
Найти высоту треугольника со сторонами 149, 124 и 78
Найти высоту треугольника со сторонами 75, 71 и 11
Найти высоту треугольника со сторонами 135, 102 и 74
Найти высоту треугольника со сторонами 117, 98 и 39
Найти высоту треугольника со сторонами 57, 49 и 18
Найти высоту треугольника со сторонами 149, 124 и 78
Найти высоту треугольника со сторонами 75, 71 и 11