Рассчитать высоту треугольника со сторонами 149, 144 и 72

Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Высота треугольника по сторонам
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{149 + 144 + 72}{2}} \normalsize = 182.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{182.5(182.5-149)(182.5-144)(182.5-72)}}{144}\normalsize = 70.8325448}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{182.5(182.5-149)(182.5-144)(182.5-72)}}{149}\normalsize = 68.4556138}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{182.5(182.5-149)(182.5-144)(182.5-72)}}{72}\normalsize = 141.66509}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 149, 144 и 72 равна 70.8325448
Высота треугольника опущенная с вершины A на сторону BC со сторонами 149, 144 и 72 равна 68.4556138
Высота треугольника опущенная с вершины C на сторону AB со сторонами 149, 144 и 72 равна 141.66509
Ссылка на результат
?n1=149&n2=144&n3=72