Рассчитать высоту треугольника со сторонами 15, 13 и 10
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{15 + 13 + 10}{2}} \normalsize = 19}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{19(19-15)(19-13)(19-10)}}{13}\normalsize = 9.85576454}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{19(19-15)(19-13)(19-10)}}{15}\normalsize = 8.5416626}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{19(19-15)(19-13)(19-10)}}{10}\normalsize = 12.8124939}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 15, 13 и 10 равна 9.85576454
Высота треугольника опущенная с вершины A на сторону BC со сторонами 15, 13 и 10 равна 8.5416626
Высота треугольника опущенная с вершины C на сторону AB со сторонами 15, 13 и 10 равна 12.8124939
Ссылка на результат
?n1=15&n2=13&n3=10
Найти высоту треугольника со сторонами 97, 94 и 19
Найти высоту треугольника со сторонами 97, 79 и 66
Найти высоту треугольника со сторонами 107, 101 и 22
Найти высоту треугольника со сторонами 145, 124 и 70
Найти высоту треугольника со сторонами 108, 85 и 75
Найти высоту треугольника со сторонами 104, 60 и 54
Найти высоту треугольника со сторонами 97, 79 и 66
Найти высоту треугольника со сторонами 107, 101 и 22
Найти высоту треугольника со сторонами 145, 124 и 70
Найти высоту треугольника со сторонами 108, 85 и 75
Найти высоту треугольника со сторонами 104, 60 и 54